10 research outputs found

    Using patterns position distribution for software failure detection

    Get PDF
    Pattern-based software failure detection is an important topic of research in recent years. In this method, a set of patterns from program execution traces are extracted, and represented as features, while their occurrence frequencies are treated as the corresponding feature values. But this conventional method has its limitation due to ignore the pattern’s position information, which is important for the classification of program traces. Patterns occurs in the different positions of the trace are likely to represent different meanings. In this paper, we present a novel approach for using pattern’s position distribution as features to detect software failure. The comparative experiments in both artificial and real datasets show the effectiveness of this method

    Testing long-term patterns of basin sedimentation by detrital zircon geochronology, Centralian Superbasin, Australia

    No full text
    The definitive version is available at www.blackwell-synergy.comDetrital zircon geochronology of Neoproterozoic to Devonian sedimentary rocks from the Georgina and Amadeus basins has been used to track changes in provenance that reflect the development and inversion of the former Australian Superbasin. Through much of the Neoproterozoic, sediments appear to have been predominantly derived from local sources in the Arunta and Musgrave inliers. Close similarities between the detrital age signatures of late Neoproterozoic sedimentary rocks in the two basins suggests that they were contiguous at this time. A dominant population of 1.2–1.0 Ga zircon in Early Cambrian sediments of the Amadeus Basin reflects the uplift of the Musgrave Inlier during the Petermann Orogeny between 560 and 520 Ma, which shed a large volume of detritus northwards into the Amadeus Basin. Early Cambrian sedimentary rocks in the Georgina Basin have a much smaller proportion of 1.2–1.0 Ga detritus, possibly due to the formation of sub-basins along the northern margin of the Amadeus Basin which might have acted as a barrier to sediment transfer. An influx of 0.6–0.5 Ga zircon towards the end of the Cambrian coincides with the transgression of the Larapintine Sea across central Australia, possibly as a result of intracratonic rifting. Detrital zircon age spectra of sedimentary rocks deposited within this epicontinental sea are very similar to those of coeval sedimentary rocks from the Pacific Gondwana margin, implying that sediment was transported into central Australia from the eastern continental margin. The remarkably consistent ‘Pacific Gondwana’ signature of Cambro-Ordovician sediments in central and eastern Australia reflects a distal source, possibly from east Antarctica or the East African Orogen. The peak of the marine incursion into central Australia in the early to mid Ordovician coincides with granulite-facies metamorphism at mid-crustal depths between the Amadeus and Georgina basins (the Larapinta Event). The presence of the epicontinental sea, the relative lack of a local basement zircon component in Cambro-Ordovician sedimentary rocks and their maturity suggest that metamorphism was not accompanied by mountain building, consistent with an extensional or transtensional setting for this tectonism. Sediments deposited at 435–405 and 365 Ma during the Alice Springs Orogeny have detrital age signatures similar to those of Cambro-Ordovician sedimentary rocks, reflecting uplift and reworking of the older succession into narrow foreland basins adjacent to the orogen.D. W. Maidment, I. S. Williams, M. Han

    Material Circulation through Time: Chemical Differentiation Within the Mantle and Secular Variation of Temperature and Composition of the Mantle

    No full text

    The diversity and evolution of late-Archean granitoids: Evidence for the onset of “modern-style” plate tectonics between 3.0 and 2.5Ga

    No full text

    The `Emerging Powers': China, Singapore, Hong Kong and Taiwan

    No full text

    The Sixth Problem of Generalized Algebraic Regression

    No full text
    corecore